Structure Cristalline d'un Composé d'Addition du Bromure Mercurique avec le Dioxanne-1,4: HgBr₂. 2C₄H₈O₂

PAR MICHEL FREY ET JEAN-CLAUDE MONIER

Groupe de Cristallographie et de Chimie du Solide, Laboratoire de Cristallographie-Minéralogie, Faculté des Sciences, 14-Caen, France

(Reçu le 14 décembre 1970)

The crystal structure of a solvate of mercuric bromide with 1,4-dioxane, HgBr₂.2C₄H₈O₂ was determined from the 357 integrated intensities of the *hki* (*i*=0, 1, 4, 5) and *hil* (*j*=0, 1, 2) levels registered with a precession camera. The final R was 0.079. The Hg–Br bond is 2.43 Å and the dioxane ring has a chair conformation. The coordination of the mercury atoms is octahedral. The structure may be described as a stacking of layers perpendicular to c and made of HgBr₂ and C₄H₈O₂ molecules bound together by Hg…O bond, length: 2.83 Å. The crystal cohesion otherwise consists of van der Waals contacts between HgBr₂ and C₄H₈O₂ molecules of two neighbouring layers.

Introduction

Si l'on procède à la décomposition ménagée des cristaux de solvates de sels mercuriques avec des solvants organiques, on constate dans plusieurs cas, que les cristaux de sels mercuriques formés après le départ des solvants respectifs, prennent une orientation bien déterminée par rapport à la matrice des solvates correspondants (Frey, Ledésert & Monier, 1967; Ledésert, 1970).

Pour vérifier si ces phénomènes recouvraient des concordances paramétriques et structurales entre les solvates et les sels purs, nous avons étudié les caractéristiques cristallochimiques et les structures des solvates (Frey, 1970b).

Partie expérimentale

L'existence de solvates du bromure mercurique avec le dioxanne-1,4 a été mise en évidence par Brand & Türck (1936), Rheinboldt, Luycken & Schmittmann (1937) et Crenshaw, Cope, Finkelstein & Rogan (1938). Dans tous les cas, les cristaux étaient produits par refroidissement de solutions saturées à chaud de bromure mercurique dans le dioxanne, les échantillons obtenus se présentaient toujours sous forme d'aiguilles. Les résultats de l'analyse chimique correspondaient à deux formules différentes, soit $HgBr_2 \cdot 2C_4H_8O_2$ pour le premier travail (Brand & Türck, 1936) et $HgBr_2 \cdot C_4H_8O_2$ pour les deux autres (Rheinboldt *et al.*, 1937; Crenshaw *et al.*, 1938).

Les cristaux que nous avons étudiés ont été préparés par évaporation de solutions de bromure mercurique dans le dioxanne-1,4 saturées à la température ambiante. Après une semaine ou deux, on obtient des cristaux transparents tabulaires ou isométriques dont la morphologie présente la symétrie quadratique. Les seules formes observées sont le pinacoïde {001} souvent très développé et la bipyramide {101}. Ces cristaux sont instables en dehors de leur solution ou de la vapeur saturante de celle-ci. Pour les conserver, nous les avons donc scellés dans des tubes capillaires en verre de Lindemann.

La composition chimique et les caractéristiques de la maille (Frey, 1970*a*) sont indiquées dans le Tableau 1. La seule condition d'extinction est h+k+l=2n+1. Nous avons retenu comme groupe spatial le plus probable celui qui correspondait à l'hémièdrie centrée du système quadratique soit I4/m. Nous avions en effet observé que, $I_{hkl} \neq I_{\bar{h}kl}$ et $I_{\bar{h}kl} = I_{h\bar{k}l}$. Le choix de I4/m a été confirmé lors des affinements de la structure.

Tableau 1. Caractéristiques de la maille

Formule chimique: HgBr₂. 2C₄H₈O₂ a=b=7,454 (3) c=12,439 (7) Å V=691 Å³ $d_{mes.}=2,54$ (4) $d_{eal.}=2,58$ pour Z=2 Groupe spatial: I4/m (no. 87) μ_l Cu K α =283 cm⁻¹ μ_l Mo K α =171 cm⁻¹ Extinction h+k+l=2n+1

Les cristaux de solvate s'altèrent sous l'action des rayons X. Trois cristaux ont donc été nécessaires pour réaliser tous les enregistrements (le premier pour la famille hki, le second pour h0l et h1l, le troisième pour h2l). Nous avons vérifié par une série de clichés d'une même strate, effectués avec le même cristal, que si l'on avait un affaiblissement progressif des intensités diffractées, on n'observait pas cependant de variations mesurables des intensités relatives.

L'absorption des rayons X par les cristaux est importante (Tableau 1). Nous avons limité cet effet en utilisant le rayonnement $\lambda Mo K\alpha$ (filtre Zr). Pour obtenir ensuite un contraste suffisant entre les taches faibles et le fond, nous avons recueilli les intensités avec une chambre de précession. Les dimensions des cristaux suivant les trois axes **a**, **b**, **c** étaient identiques (0,25 × 0,25 × 0,25 mm).

Les intensités intégrées des 116 taches indépendantes des quatre strates hki avec i=0, 1, 4, 5 d'une part et de

241 taches des trois strates hjl avec j=0, 1, 2 d'autre part ont été obtenues après avoir microphotométré, pour chaque strate hki et hjl, toutes les taches équivalentes ainsi que le fond, corrigé ces taches de leurs facteurs de Lorentz et polarisation, et réduit les réflexions équivalentes de chaque strate à leur moyenne. L'ensemble des intensités de chacune des strates a été recueilli sur plusieurs films réalisés avec des temps d'exposition croissants. Tous ces films ont été ensuite mis à la même échelle par corrélation. Les strates hk2 et hk3 pratiquement 'éteintes' n'ont pas été enregistrées.

Nous n'avons pas effectué de corrections d'absorption. Dans le faible domaine de θ où se situe la quasi totalité des taches enregistrées, la variation d'absorption pour les divers faisceaux diffractés est de l'ordre de grandeur des erreurs que l'on commettait en effectuant une correction pour le faciès des cristaux utilisés.

Par corrélation à l'aide des taches communes aux sept strates enregistrées, les 357 intensités ont été mises à une même échelle et réduites à 278 valeurs indépendantes.

Dans le Tableau 3 où figurent les 357 réflexions de départ, on constate que les facteurs de structure observés des taches de petit θ sont trop faibles. Faute d'avcir pu corriger le phénomène d'extinction auquel est due cette anomalie, nous n'avons pas tenu compte de ces taches dans les affinements par moindres carrés. Les intensités de 002 et 101 n'ont pu être obtenues avec une précision suffisante, ces taches trop proches de l'origine apparaissent dans un fond qu'il ne nous a pas été possible d'estimer.

Détermination de la structure

Des projections de la fonction de Patterson effectuées parallèlement à [001] et [010] ont permis de déterminer les positions des atomes de mercure et de brome. Un calcul de $R = \sum ||F_o| - |F_c|| / \sum |F_o|$ avec B = 1,5 a donné à ce stade R = 0,19. Il a été effectué en utilisant les 278 réflexions indépendantes. Le facteur de diffusion atomique a été calculé suivant la formule de Vand, Eiland & Pepinsky (1957) modifiée par Forsyth & Wells (1959); les constantes utilisées sont celles tabulées par Moore (1963) pour Hg²⁺, Br⁻, O et C_{Valence}. On a tenu compte de la dispersion anomale des atomes de mercure et de brome (International Tables for X-ray Crystallography, 1962).

Les positions des atomes de la molécule de dioxanne ont été déterminées sans ambiguité sur des sections systématiques de la série différence, parallèles à [001]. Ces sections ont été calculées en enlevant la contribution des atomes de mercure et de brome (Fig. 1).

Affinements

Pour effectuer les affinements nous avons utilisé successivement: – les 278 intensités indépendantes déjà mises à l'échelle commune par l'expérience, les 357 intensités des sept strates qui ont été mises à l'échelle commune par le calcul.

A partir des 278 intensités indépendantes, nous avons affiné les positions des atomes et leurs facteurs d'agitation thermique isotrope en utilisant à la fois la série différence (Lipson & Cochran, 1953) et une méthode de moindres carrés (programme SFLS5 de Prewitt, 1962). Aucune pondération n'a été introduite dans l'affinement par série différence. Dans l'affinement par moindres carrés où l'expression minimisée est $\sum w(|F_o| |F_c|^2$, la pondération w = 0.25 si $|F_o| < 10$ et $|F_o| > 200$, w=1 si $25 < |F_o| < 150$ entre ces intervalles w est calculée par interpolation linéaire. Dans le dernier cycle de l'affinement par moindres carrés, les variations calculées de tous les paramètres sont toujours inférieures à 0,10 σ . A l'issue des deux affinements, les coordonnées atomiques et les facteurs d'agitation thermique sont pratiquement les mêmes, R=0,106.

A partir des 357 intensités des sept strates, nous avons effectué un affinement par la méthode des moindres carrés en utilisant le même schéma de pondération que précédemment. Les constantes de mise à l'échelle des sept strates étaient recalculées séparément après chaque cycle. L'indice R s'est abaissé après sept cycles d'affinement à R=0,091 pour une agitation thermique isotrope des atomes. Comme dans les deux premiers affinements les variations calculées de tous les paramètres sont, à la fin du dernier cycle, toutes inférieures à 0,10 σ . Nous avons alors poursuivi le calcul en affinant les facteurs d'agitation thermique anisotrope des atomes de mercure et de brome. L'indice R final= 0,079. $R' = \{\sum w(|F_o| - |F_c|)^2 / \sum w |F_o|^2\}^{1/2}$ de Hamilton = 0,108. Ce sont les coordonnées atomiques et les facteurs d'agitation thermique obtenus par ce dernier calcul qui figurent dans le Tableau 2. Les facteurs de struc-

Fig. 1. Projection de la structure parallèle à [001]. En noir atomes à la cote 0; en hachuré atomes à la cote $\frac{1}{2}$.

ture calculés et observés correspondants sont indiqués dans le Tableau 3.

Tableau 2. Paramètres atomiques

Coordonnées des atomes et $\sigma(\times 10^4)$ et *B* de l'oxygène et du carbone

	x	у	Ζ	В
Hg(1)	0	0	0	2,04*
Br(1)	0	0	1956 (4)	3,42*
O(1)	1265 (51)	3583 (49)	0	6,0 (8)
C(1)	997 (42)	4719 (39)	935 (29)	4,5 (6)
	*	B équivalents		

Facteurs d'agitation thermique anisotrope ($\times 10^4$) du mercure et du brome.

$f=f_0 ex$	$\mathbf{p} - (h^2 \beta_{11} + k)$	$k^2\beta_{22} + l^2\beta_{33}$	$+2hk\beta_{12}$ +	$-2hl\beta_1$	$_{3}+2kl$	$\beta_{23})$
	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Hg(1)	104 (3)	104 (3)	27 (1)	0	0	0
Br(1)	180 (8)	180 (8)	44 (4)	0	0	0

Tablea	u 3.	Facteurs	de	structures	calculés	et	observés
--------	------	----------	----	------------	----------	----	----------

н	÷	ι	rc.	۴n	۳	۲	ι	۲c	FO	ч	×	ι	rc.	*0	н	ĸ -		• •	**	H		ι		F.0
7	ñ	٥	2819	>17>	1	1	٠	1295	1 124	٠	0	6	912	949	-3	1	. 1	145	1 171		,	,	197	471
	2	•	1490	1512	-1	1	٠	1174	1 149	•	•	٨	75,7	729	٩.	1	•	#20	436		>	٩.	490	549
2	5	ő	491	641	-2	-	1	870	798	÷.	\$	\$	447	4.27	-5	1	2	AR 7	898		2	2	240	154
	ť	ō	1741	155A		i	-	512	+10	- i	ŏ	÷	500	373	-7	1	2	~~	495		;	:	234	427
2	1	0	2115	>>17	-7	1	٠	538	410		ñ	7	197	412	ò	i.	,	484	537		5	÷.	1145	1141
-1	1	2	2129	2272		2	•	1044	1061	2	2	2	111	497	?	1	2	107	144	. •	2	٠	1044	1141
-5	î	ö	1409	SAT.		5	- 2	710	492		8	2	24	244	~	1.		1444			2	•	710	944
7	i	0	441	840	- ^	,	٠	437	611	1	õ		842	972		i	,	245	275		5		637	587
-;	ļ	2	2308		- 2	3		- 22	859	2	0	2	ADA	271	•	1		221	247		2	•	474	16.1
÷.	?	ē	1492	1440	- 7	i	-	529	514	;	ĕ	÷	343	401		1	÷	<u>S</u> 1	244	-	3	:	1908	2114
	2	2	15.10	1754	:	•	٠	844	979	2	0	10	1447	1809	-8	i -		240	175	÷1	,	٩.	1649	1713
	÷	0	1050	1075	-	:	:	317	531			12	1227	1000		1 1		211	308	2	3	5	1612	1429
	,	n	547	500	۰.	÷		504	4.84		ŏ	10	640	674		1		261	223	1	5	2	1054	1078
-1	:	2		404		2		340	344		0	10	215	444	•5	÷ i		747	259	-4	è.	٩.	1294	1314
- ÷	÷	ň	1234	1241		2	- 2	-04		- 1	8		212	1111	-	1 1	2	14 2	893	- 2	11	:	674	225
-5	٦	0	1140	1218	۰.	۱		593	791	-	ő	ii .	540	606	- 2	i (AAA	901	-6	5	2	1157	1307
	2	2	231			2	2		. 212	:	0	11	396	144	•	1.1		670	458	,	2.4	4	1170	1244
	4	n.	1147	1342	;	ö	3	770	645	\$	8	Ľ,	195	416		1 3		641	442		2.2	2	1045	1132
•	۰.	2	708	721	•	I.	٩	1333	1190		ō	2	25.9	213	-4	i (i .		494		5 1	5	739	714
	2	2	178	111		1	2	1144	1259		2 1	•	420	447	1	1.19	1		1134	÷.	, ,	•		A11
i		ñ.	586	549		i	3	A15	424	;	1		2115	2147		1 12		042	1074	4	3 3	2	434	401
-7	5	2	554	445		1	1	\$77	584	-1	i.	ġ.	2129	2118	•	i ii	1	807	824	1	5	,	499	504
	è	2	104	204	-	;	2	561			1	2	1447	1540		1.15		779	778	-1	2.1	7	307	242
Ă.	٠	ø	547	\$10	- 1	•	ŝ	inia.	591	-7	÷	6	841	A41	5	11		41A	1001		ς.	;	460	445
2	2	1	1242	1744	2	2	5	1054	1147	-?	i .	ō	747	723	- 2	i ii		934	1035		5.	,	453	415
- 7	3	÷.	608	580		ŝ	-2	1223	1 348		1	1	1241	1112		11		<u> </u>	707	- 2	2	2	256	274
,	ŧ	i .	1241	1272	- 4	i		1051	953		1	÷	1141	1403		11		÷	119	-/	5		274	170
-?	1	1	2141	1425		2	5	*1*	444	-4	1	į.	1 391	1 178	-4	1.11		527	531	-4	è.	۹.	250	121
	;	1	1 191	1 196	- 22	2	2	901	915		1	1	212			1 !!		210	279	.1	2 5	•	881	909
	î	i.	915	942	-5	٠	4	903	414		i -	÷		416	1	i iž		222	20	-;	; ;		713	813
	ļ	1	450	81A		1	2	- 22	544	-1	1	1	508	407	2	11		345	267	-1	2.0	•	604	559
- 4	i	i.	508	479	-	ŝ	÷.	565			÷.	;		442	-7	1 12		345	267	- 2	2.2			460
	,	1	1524	1909	- *	٩	٩	632	453		i i	2	431	195	ĩ	i ie			416	•;	5.		347	510
-2	3	1	8072	1101	2	2	2	7430	2017		1	2	417	420	3	1.14		<u>11</u>	347	-1	2.0	•	364	270
- Ś	5	i		1001	~	ň	ö	1105	1151	- 7	;	\$	217	176		1 13		110	-25	•	2.15	2	1227	1144
2	?	1	588	444		0	ņ	693	714	٠	i.	2	214	205	+5	i ii		326	121	÷.	5 10	5	824	735
-:	;			237	- 2	2	1	1262	1242		1	2	202	174	<u>°</u>	1 !!		535	638	-+	e ie	•	847	761
-9	•	i	14.8	122	÷	ñ	i	ADA	414		i -	÷	348	101	.,	1 13					2 10	2	411	445
	2	1	967	1054	•	0	1	404	470		1	1	245	290	٠	1.11		\$72	457	1	žü	i i	934	829
7	-	÷	709	497	:	2	;	348	127		1	1	212	342	**	1 1			457	-1	2 11	1	516	850
-4	٦	i.	499	491		٠	,	288	244	1	i i	÷.	15.17	1579		i i		555	305	- ï	58	ζ.	216	14.7
	2	1	-15	184	1	0	2	154	409	2	1	٠	1295	1386	1	1.14		51A	564	÷i	21	í –	189	201
- 6	2	1	775		-	6	÷	121	141	-?	1	:	1174	871		1 12			445	2	2.1	•	470	134
-5	4	1	701	714	,	Ô,	۰.	245	769	-5	i i	4	#70			1 1		110	117		2 14		150	270
	2	1	502		2	ŝ	2	209	141		1	٠.	512	447	•5	1 14		140	117	.1	> 14	5	SAA	\$22
9	1	i.	104	440	2	ň	2	1105	1154	- 2	1	:	2149	2109		52		192	1414	-!	2 1		577	531
• •	٠	1	104	505		•	٠	85.R	915	,	i.	٩.	1449	1444		5	1	100	433	- 1	5 6		411	454
	2	1	511	4 19	•	2	•	713	874	- ?	1	2	1908	1415	-4	2.1	1	050	1002	Ś.	۶ Ì۹	•	395	419
	ŝ	i	150	104	- ī		ŝ	7149	1944		1	2	11.0	1114		;;		142	454	-	2 1		422	107
- 1	5	1	317	105	à	2	5	1872	1015		i i	٩.	94.7	1011	i.	2	1	174	1534	;	5 11	τ.	440	120
	2	1	144	141	;	2	5	1202	1403	•••	1	5	A15	473	-1	2 1		*77	932	. •	> 10	۰.	344	114
	ā	4	454		á	•	ŝ	419		- 4	÷	2	541			; :	- 1	102	877	- 4	• ••	•	172	214
•	2	٠	731	702	•	٩	۸	1412	1445	- i -	i i	κ.	1541	1570	,	5 1			502					
	•	۰.		614	~	^	•	1157	1221	۰,	1	•	1241	1421	- 7	2 1		575	518					

L'inisone intramolégulaires

Fig.2. Arrangement moléculaire.

Les résultats obtenus à l'issue des deux premiers affinements (réalisés avec les 278 taches indépendantes) ne diffèrent que très peu de ceux du Tableau 2; les variations sont toutes inférieures aux écarts types indiqués dans le Tableau 2.

Les valeurs des écarts types sur les positions des atomes légers sont celles auxquelles on peut s'attendre en raison de la faible contribution des atomes légers à l'ensemble des facteurs de structure (Cruickshank, 1960). Si l'on déduit la contribution des atomes d'oxygène et de carbone l'indice R (avec agitation isotrope des atomes) s'élève seulement de 0,091 à 0,138.

Description de la structure et discussion

Liaisons intramoléculaires

Pour la liaison Hg–Br de la molécule de bromure mercurique on a obtenu 2,433 (5) Å, valeur légèrement inférieure à celle qu'avaient indiqué pour HgBr₂ Verwell & Bijvoet (1931) et Braekken (1932) soit 2,50 (10) Å, et pour HgBr₂·C₄H₈O, Frey, Leligny & Ledésert (1971) soit 2,473 (12) Å.

La conformation en chaise du cycle dioxanne a pu

Tableau 4. Distances interatomiques et angles

Les écarts types sont indiqués en 10⁻³ Å et en degrés.

Liaisons III	manificulaties							
$\begin{array}{c} HgBr_2\\ C_4H_8O_2 \end{array}$	Hg(1)-Br(1) O(1)C(1) C(1)-C(1,2)	2,433 (5) Å 1,452 (41) 1,544 (42)	C(1,3)-O(1)-C(1) OC(1)-C(1,2)	106° (2,4)° 106° (2,4)				
Angles dièc	ires	O(1)-C(1)(C(1)-C(1,2)-($O(1)-C(1) - C(1,2)-O(1,2) = -66,3^{\circ}$ C(1)-C(1,2)-O(1,2)-C(1,4) = +66					
Liaisons intermoléculaires		Hg(1)-O(1) =	Hg(1)-O(1)=2,832 (37) Å					

2489

être mise en évidence (Tableau 4). Le plan de symétrie de la molécule est confondu avec le miroir m. Les valeurs des liaisons et des angles sont comparables à celles données par de nombreux auteurs en particulier, Davis & Hassel (1963) pour le dioxanne-1,4 à l'état de vapeur, et Durant, Gobillon, Piret & van Meerssche (1966) dans l'étude du composé cristallisé LiCl. C₄H₈O₂.

Liaisons intermoléculaires

La distance Hg(1)–O(1)=2,832 (37) Å, légèrement inférieure à la liaison de van der Waals (2,86 Å), a une valeur très voisine de celles que l'on trouve dans des composés analogues: HgCl₂. CH₃OH (Brusset & Madaule-Aubry, 1966), Hg(CN)₂. CH₃OH (Ledésert, Frey, Nakajima & Monier, 1969), 5Hg(CN)₂. 4C₄H₈O (Frey, 1970b).

L'entourage des atomes de mercure est octaédrique, Les sommets de l'octaèdre sont occupés par les deux atomes de brome de la même molécule et par quatre atomes d'oxygène des molécules de dioxanne voisines.

Les trois valences de l'oxygène ne sont pas coplanaires, $Hg(1)-O(1)-C(1)=120(1,5)^{\circ}$ et C(1,3)-O(1)-C(1)=106 (2,4)°.

L'édifice cristallin peut se décrire comme un empilement de couches perpendiculaires à [001] et formées de molécules HgBr₂ et C₄H₈O₂ liées par Hg...O. Ceci rend bien compte du développement du pinacoïde. La cohésion entre les couches est assurée par des liaisons de van der Waals; Br(1,2)...CH₂(1) = 3,98 Å (Fig. 2).

Dans cette structure il n'existe pas une organisation des molécules minérales comme c'est souvent le cas dans les solvates comportant une plus faible proportion de solvant: HgCl₂. CH₃OH (Brusset *et al.*, 1966), 5Hg(CN)₂.4C₄H₈O (Frey, 1970b) ou HgBr₂.C₄H₈O (Frey, Leligny & Ledésert, 1971); les molécules HgBr₂ sont isolées les une des autres par les molécules C₄H₈O₂. La croissance orientée des cristaux de HgBr₂, que l'on a observée sur le pinacoïde des cristaux de solvate, ne peut donc s'effectuer qu'au prix de réarrangements importants. L'existence du composé HgBr₂·C₄H₈O₂ comme nous l'avons vu plus haut, a été mise en évidence. On peut donc imaginer que la transformation du solvate HgBr₂.2C₄H₈O₂ en HgBr₂ se fait en deux étapes dont la phase intermédiaire serait le composé $HgBr_2 \cdot C_4H_8O_2$. Nous avons entrepris la détermination de la structure cristalline de ce composé.

Nous remerçions Monsieur le professeur Weiss et le laboratoire de Cristallochimie de l'Institut de Chimie de Strasbourg pour l'aide qu'ils nous ont apportée dans la réalisation des calculs. Nous remerçions également Madame J. Chardon de sa collaboration technique.

Références

- BRAEKKEN, H. (1932). Z. Kristallogr. 81, 152.
- BRAND, K. & TÜRCK, I. (1936). Pharm. Zentralhalle Dtsch. 77, 591.
- BRUSSET, H. & MADAULE-AUBRY, F. (1966). Bull. Soc. Chim. Fr. 10, 3121.
- CRENSHAW, J. L., COPE, A. C., FINKELSTEIN, N. & ROGAN, R. (1938). J. Amer. Chem. Soc. 60, 2308.
- CRUICKSHANK, D. W. J. (1960). Acta Cryst. 13, 774.
- DAVIS, M. & HASSEL, O. (1963). Acta Chem. Scand. 17, 1181.
- DURANT, F., GOBILLON, Y., PIRET, P. & VAN MEERSSCHE, M. (1066) Bull See Chim. Below 75, 52
- (1966). Bull. Soc. Chim. Belges, 75, 52. FORSYTH, J. B. & WELLS, M. (1959). Acta Cryst. 12, 412.
- FORSYTH, J. B. & WELLS, WI. (1959). Acta Cryst. 12, 41 Frey, M. (1970a). C.R. Acad. Sci., Paris, 270, 413.
- Frey, M. (1970*b*). Thèse Caen no. C.N.R.S. A.O. 4028.
- FREY, M. (1970b). These Cach no. C.IV.R.S. A.O. 4020.
 FREY, M., LELIGNY, H. & LEDÉSERT, M. (1971). A paraître au Bull. Soc. Fr. Minér. Crist.
- International Tables for X-ray Crystallography (1962). Vol.
- LEDÉSERT, M. (1970). C.R. Acad. Sci., Paris, 270, 534.
- III. Birmingham: Kynoch Press.
- LEDÉSERT, M., FREY, M. & MONIER, J. C. (1967). Bull. Soc. Fr. Minér. Crist. 90, 36.
- LEDÉSERT, M., FREY, M., NAKAJIMA, S. & MONIER, J. C. (1969). Bull. Soc. Fr. Minér. Crist. 92, 342
- LIPSON, H. & COCHRAN, W. (1953). The Crystalline State, Vol. III. London: Bell & Sons.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169.
- PREWITT, C. T. (1962). Fortran crystallographic least squares program. Report Nb. ORNL TM. 305, Oak Ridge, Tennessee.
- RHEINBOLDT, H., LUYKEN, A. & SCHMITTMANN, H. (1937). J. Prakt. Chem. 149, 32.
- VAND, V., EILAND, P. F. & PEPINSKY, R. (1957). Acta Cryst. 10, 303.
- VERWEEL, H. J. & BIJVOET, J. M. (1931). Z. Kristallogr. 77, 122.